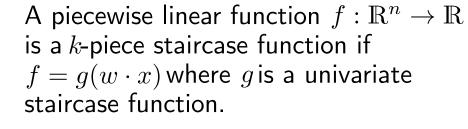
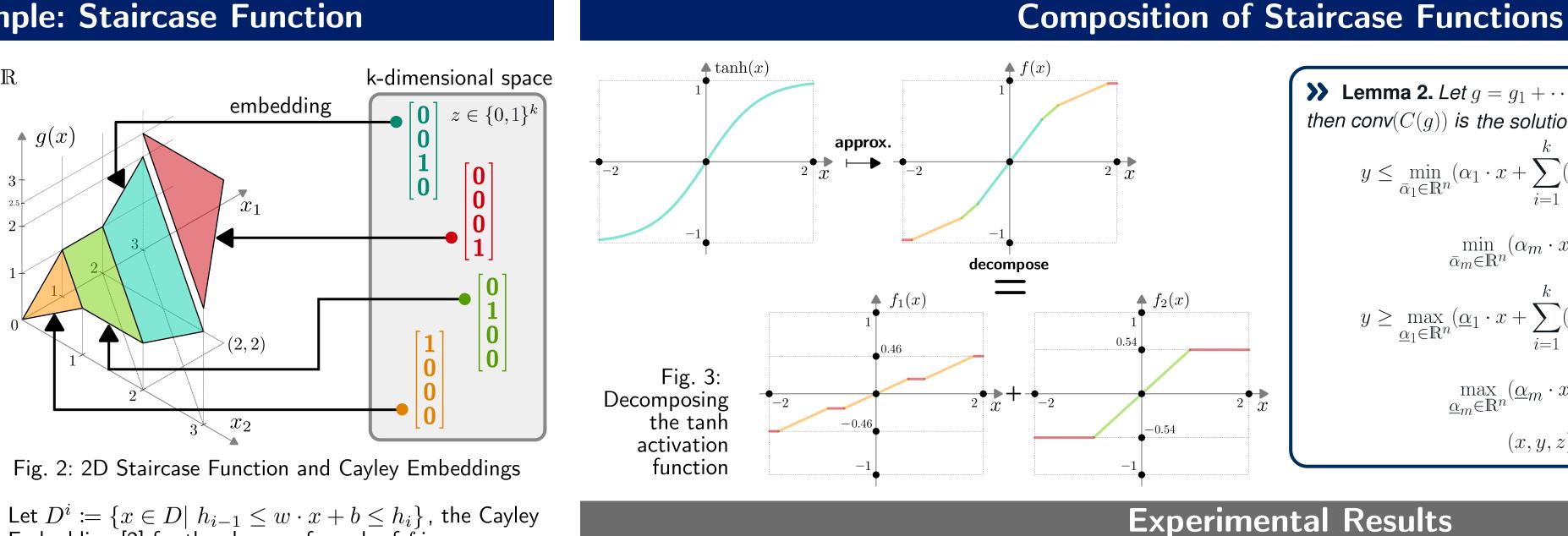
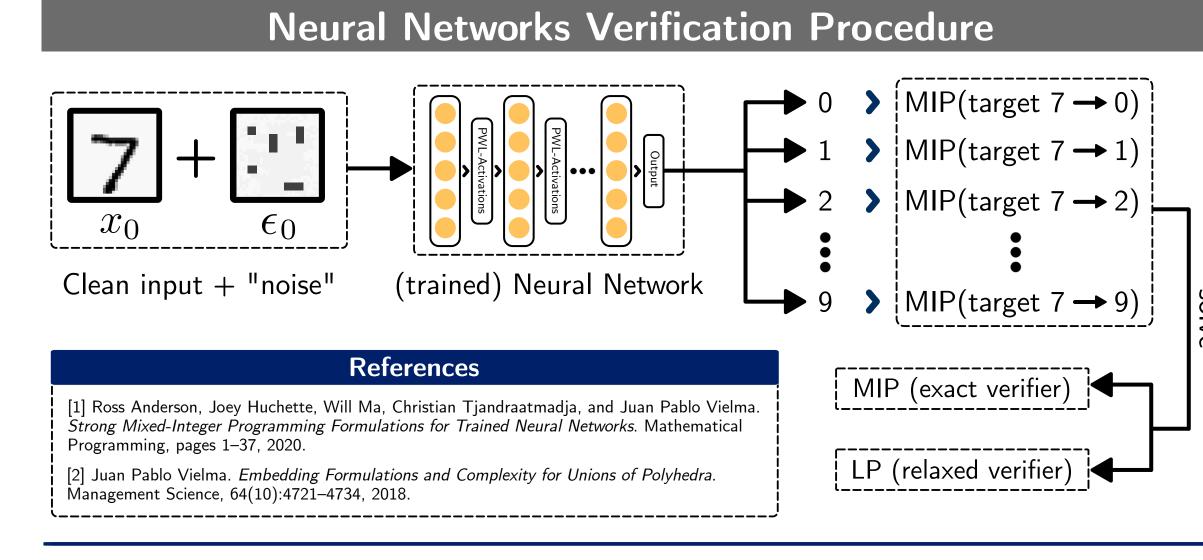

Neural Networks Verification as Piecewise Linear Optimization

Tu Anh-Nguyen Joey Huchette




Motivating Example: Staircase Function

A univariate piecewise linear function $f : \mathbb{R} \to \mathbb{R}$ with k pieces is a staircase function if there exists $s \in \mathbb{R}$ such that every pieces' slope $a_i \in \{0, s\}$.


Fig. 1: 1D Staircase Function

Let $D^i := \{x \in D | h_{i-1} \le w \cdot x + b \le h_i\}$, the Cayley Embedding [2] for the closure of graph of f is:

 $S_{\text{Cayley}}(f) \coloneqq \bigcup_{i=1}^{k} \{ (x, y, z) | x \in D^i, \ y = f(x), \ z = e^i \}$

Table 1: Relaxed Verifiers									Table 2: Exact Verifier using Cayley Embedding							
NN Arch.	ϵ	DeepPoly		Big-M Formulation		Cayley Emb. Formulation		NN Arch.	-	Cayley Embedding Formulation						
		#Verified	Time (s)	#Verified	Time (s)	#Verified	Time (s)		- e -	#No	des	Gap (%	هُ) Guro	Gurobi Time (s) User Call		backs (s
	0.008	118	0.338 ± 0.056	138	1.060 ± 0.005	138	1.100 ± 0.008	Dorefa 2		2984.4 =	± 1590.1	0.00	2.8	34 ± 0.66	$1.14~\pm$	0.4
Dense $2 \ge 256$	0.016	59	0.338 ± 0.058	112	1.056 ± 0.006	113	1.129 ± 0.086	Dorefa 3		53277.0 ± 18666.20		$4.19~\pm$	1.74 T	imeout	17.73 ± 5.12	
Dorefa 2	0.024	19	0.336 ± 0.055	65	1.075 ± 0.004	66	1.139 ± 0.078	Dorefa 4		33248.4 =	E 268.06	$4.28~\pm$	1.06 T	imeout	14.09 \pm	: 0.32
	0.032	0	0.326 ± 0.054	28	1.080 ± 0.006	29	1.174 ± 0.086	Dorefa 2				$11.57 \pm $	5.70 T	imeout	$16.51~\pm$	6.52
	0.008	132	0.339 ± 0.059	142	1.056 ± 0.005	142	1.102 ± 0.075	Dorefa 3 Derefe 4	0.016	33406.3 =		12.33 ± 6.0		imeout	14.46 ± 0.35 19.63 ± 9.63	
Dense 2 x 256	0.016	87	0.340 ± 0.059	125	1.058 ± 0.005	125	1.120 ± 0.070	Dorefa 4		42701.2 =	E 20087.1	$9.34~\pm$	0.22	imeout	$19.05 \pm$: 9.05
Dorefa 3	0.024	11	0.341 ± 0.058	90	1.078 ± 0.005	91	1.169 ± 0.079			Table 3: Exact Verifier using Big-M						
	0.032	0	0.324 ± 0.052	27	1.080 ± 0.006	29	1.210 ± 0.090									
Dense 2 x 256	0.008	132	0.329 ± 0.055	143	1.082 ± 0.005	144	1.113 ± 0.082		NN Arch.	\cdot ϵ -	Big-M Formulation					
	0.016	78	0.329 ± 0.056	126	1.063 ± 0.006	126	1.134 ± 0.072				#Noo	des	Gap (%) Solve	Time (s)	
Dorefa 4 Dense 2 x 256 Dorefa 5	0.024	6	0.330 ± 0.056	86	1.071 ± 0.006	90	1.178 ± 0.086		Dorefa 2 Dorefa 3		3925.5 ± 2326.01		0.00	3 11	± 0.87	
	0.032	0	0.331 ± 0.056	25	1.100 ± 0.006	34	1.286 ± 0.160			0.008					meout	
	0.008	140	0.329 ± 0.056	143	1.060 ± 0.006	143	1.130 ± 0.083	E	Dorefa 4		33063.8 \pm	607.23	4.46 ± 1			
	0.016	78	0.332 ± 0.056	138	1.087 ± 0.005	140	1.169 ± 0.078		Dorefa 2		$33340.6 \pm$	$.6 \pm 427.03$ 13.0		.90 Tir	neout	
	0.024	4	0.331 ± 0.056	98	1.107 ± 0.007	100	1.256 ± 0.113	D	Dorefa 3	0.016	33224.5 \pm	317.93	12.48 ± 5		Timeout	
	0.032	1	0.328 ± 0.056	33	1.144 ± 0.007	44	1.409 ± 0.190		Dorefa 4		33091.6 \pm	406.6	11.41 ± 7	.90 Tin	neout	

All neural networks is trained using the quantized network training open-source package Larq. The activation Dorefa κ is a constant piecewise function with 2^{κ} pieces.

DIMACS Rutgers University May 23-26, 2022

>> Lemma 2. Let $g = g_1 + \cdots + g_m$ where g_1, \ldots, g_k are staircase functions, then conv(C(g)) is the solutions of the following system $y \le \min_{\bar{\alpha}_1 \in \mathbb{R}^n} (\alpha_1 \cdot x + \sum_{i=1}^{i} (\max_{x^i \in D^i} (a_i^1 w - \alpha_1) \cdot x^i + b_i) z_i) + \dots +$ $\min_{\bar{\alpha}_m \in \mathbb{R}^n} (\alpha_m \cdot x + \sum_{i=1}^{m} (\max_{x^i \in D^i} (a_i^m w - \alpha_m) \cdot x^i + b_i) z_i)$ $y \ge \max_{\underline{\alpha}_1 \in \mathbb{R}^n} (\underline{\alpha}_1 \cdot x + \sum_{i=1}^{n} (\min_{x^i \in D^i} (a_i^1 w - \underline{\alpha}_1) \cdot x^i + b_i) z_i) + \dots +$ $\max_{\underline{\alpha}_m \in \mathbb{R}^n} (\underline{\alpha}_m \cdot x + \sum_{i=1}^{m} (\min_{x^i \in D^i} (a_i^m w - \underline{\alpha}_m) \cdot x^i + b_i) z_i)$ $(x, y, z) \in D \times \mathbb{R} \times \Delta^k.$

Table 2: Exact Verifier using Cayley Embedding

Contact: tu.na@rice.edu | tu-na.org