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Abstract

It is well-known that finding minimum dominating set on graphs is a NP-hard
problem. In this paper, we tried to answer the question of what cases make the
problem become solvable in polynomial time. In particular, we will give concrete
proof that a minimum dominating set can be found in polynomial time in two class
of graph: (fork, P5)-free and (claw, P5)-free. In doing so, we also start to develop
a new techniques, named reducing set, to tackle minimum dominating set problem
in other classes of graphs.

1 Introduction

A dominating set of a graph G = (V (G), E(G)) is a set D ⊂ V of vertices such that every
other vertices not in D has at least a neighbor in it. Concretely, the dominating set D of
graph G is defined as D := {v ∈ V (G) | ∀u ∈ V (G) \D, ∃v ∈ D such that v ∈ N(u)},
where N(u) := {v ∈ V (G) such that (u, v) ∈ E(G)}. The minimum dominating set
problem asks for such a set with minimum cardinality. This problem is first stated by
C.F. De Jaenisch in 1862 when he tried to find the minimum number of queens to domi-
nate a 8x8 chessboard.
The applications of dominating set can be mostly founded in social network theory and
communication network [5]. In social network theory, Wang et. al introduced a variation
of dominating set, called Positive Influence Dominating Set (PIDS) [7]. A subset D of
V (G) is a PIDS if every other node u not in D has at least deg(u)/2 neighbor in D.
The key idea here is, in modeling social network, nodes in PIDS can be interpreted as
positive influencers, and every other individuals should have many positive influcencers
(more than half of their friends) so that they will receive mostly positive impact from
others. For many reason, such as cost and benefit, we want to find the smallest PIDS. In
this research direction, there has been some effort in approximating the minimum PIDS
using greedy algorithms [8], [4].
In communication settings, a different variation of dominating set is proposed for a spe-
cific problem. For example, Mobile Ad-hoc Network (MANET) asks for the minimum
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connected dominating set (CDS) [9] - a dominating set D such that the induced subgraph
G[D] is connected. CDS also serves as the backbone for Wireless Sensor Network [2].

In above applications, A good approximation of dominating set is found. However,
in this paper, we are interested in finding an exact solution to the minimum dominat-
ing set (MDS) problem. In literature, it is well-known that answering whether a graph
has a dominating set with cardinality smaller than a given number k is NP-complete.
Therefore, we can only hope for algorithm with exponential time complexity. And the
best known bound for time complexity is O(1.4969n), where n is the number of vertices
in graph G, due to a measure and conquer approach [6].
Another direction is to answer on which case MDS problem can be solved in polynomial
time. We know that independent set and dominating set are closely related: any maximal
independent set is minimal dominating set. In literature, there has been extensive re-
search on which family of graph the independent set problem can be solved polynomially
by augmenting techniques [3]. A natural idea is to inherit this idea for MDS problem. So
instead of finding an augmenting structure, we will look for a “reducing” structure. In
this article, we are going to prove that minimum dominating set can be solved in poly-
nomial time in two family of graph (fork, P5)-free and (claw, P5)-free. Let G = (V,E) is
a graph with V is the set of vertices and E is the set of edge. S is a subset of V . We call
induced subset S of G, denote G[S] is a subgraph of G such that with vertices set S and
has edge (u, v) if and only if (u, v) ∈ E(G).

claw

fork P5

P5

If F is set of subset of graph, we called G is F -free if G does not contain any graph
in F as proper induced subgraph

2 (fork, P5) - free Graph

In this section, we will point out that beside a special case, minimum dominating set
of (fork, P5) - free Graph has less than 6 vertices. We will show that by proving the
connecting dominating set also has less than 6 vertices. For the sake of concise arguments,
if not specify directly, every graph is (fork, P5)− free

Lemma 1. The minimal connected dominating set of a (fork, P5)− free graph can only
be path, cycle or clique.

Proof. Let D be the minimal connected dominating set of G . We will prove that if
v ∈ V (D) satisfies dD(v) ≥ 3, then all neighbors of v is connected together.
Suppose dD(v) ≥ 3, and let a, b, c be three distinct neighbor of v. If all neighbors of a
are adjacent to b, c or v, then we can remove a from D and obtain smaller connected
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dominating set (which contradict the assumption about minimality of D). By similar
argument, we can conclude that exist x ∈ N(a), y ∈ N(b), and z ∈ N(c) such that, x is
not adjacent to b, c, v, y is not adjacent to a, c, v, and z is not adjacent to a, b, v

v

u

b

y

a

x

c

z

If a, b, c is not pairwise adjacent, then {x, a, v, b, c} induces a fork. Without loss of
generality, assume that b and c are adjacent, then {x, a, v, b, c} induce P5. Suppose a and
b are adjacent, then there must exist another vertex u ∈ N(v) such that u is not adja-
cent to any of vertices in {a, b, c} otherwise remove v out of D create smaller connected
dominating set.

If a, c is not adjacent, then {x, a, v, u, c} and z, c, v, a, u both induce forks, therefore
u must be adjacent to x and z. However, if so, {x, u, v, b, c} creates P5. Therefore, if
G[D] has a vertex of degree 3 or higher then all of its neighbors are connected together.

With this lemma, we can find minimum connected dominating set by finding mini-
mum dominating clique and finding minimum dominating path or cycle. We can easily
check if there is a connected dominating set with cardinality smaller than 3, therefore
from now on, we assume that every dominating set has more than 3 elements.

To find minimum dominating clique, we consider each vertex and search for the min-
imum dominating clique contains that vertex. Let v ∈ V (G), if C = v ∪ N(v) is not a
dominating set then we can conclude that v does not belong to any dominating clique
and continue our search to another vertex. If C is dominating set of G, then we se-
quentially remove vertex of C until we obtain a minimal dominating containing v in C.
The following lemma show that we can find the minimum dominating set containing v in
polynomial time.

Lemma 2. IF C = v ∪ N(v) is a dominating set, M ⊂ C such that M is minimal
dominating set containing v, then M is minimum dominating set contain v

Proof. Suppose M is not minimum dominating set containing v and contained in C,
then there must exist set M ′ such that v ∈ M ′ ⊂ M and |M ′| < |M |. For each vertex
x ∈ M , let N r

M(x) = {u ∈ N(x)|u /∈ N(x′) ∀x′ ∈ x, x′ 6= x} be the neighbor of x such
that no other vertex in M is adjacent to. Since we assumed that every dominating set
has cardinality greater than 3, and by contradictory supposition, |M | > 4. We also have
that N r

M(x) 6= ∀x ∈ M, x 6= v, otherwise we can remove x form M and obtain smaller
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dominating set containing v.
Now, we will prove that |N r

M(x)| = 1 ∀x ∈M, x 6= v. By contradiction, suppose ∃x ∈M
such that N r

M(x) ≥ 2, let two distinct vertices x1, x2 ∈ N r
M(x). Let x′ be any vertex

belonging to M and different from x and v, and u ∈ N r
M(x′). We have

x′ and x must be adjacent, otherwise x′, v, x, x1, x2 induces fork or P5

u is either adjacent to x1 or x2 (or both), otherwise u, x′, x, x1, x2 creates fork or P5

Without loss of generality, suppose ux1 ∈ E(G), then u, x1, x, v, x
′ induces P5, which

contradicts our assumption
Since |M ′| < |M |, then there must exist x′ ∈ M ′ and x1, x2 ∈ M such that x′ is adja-
cent to both N r

M(x1) and N r
M(x2). If exists x3 ∈ M,x3 6= x1, x2 is not adjacent to x′,

then x3, v, x
′, N r

M(x1), N
r
M(x1) creates a fork. Therefore ∀x3 ∈ M,x3 6= x1, x2 then x3 is

adjacent to x′. Moreover, if exists x3 ∈ M,x3 6= x1, x2 and x′ is not neighbor of N r
M(x3)

then N r
M(x3), x3, x

′, N r
M(x1), N

r
M(x2) induces a fork, which means that x1, x2, x

′ is a dom-
inating set. This contradicts our assumption about cardinality of minimum dominating
set.

To this point, we have shown that, minimum dominating clique can be found in poly-
nomial time. To show that MDS can be solved in P-time, by lemma 1, we need to devise
a method to find minimum dominating path and cycle. To do that, we consider the
following cases. If G is P8 − free finding minimum dominating path and cycle means
search all subgraphs with less than 8 vertices. If G is claw-free, we have the following
lemma.

Lemma 3. If G is claw, P5-free and G is not path or cycle then P8 − free

Proof. The above lemma can be proved by contradiction. Suppose P = x1 − x2 −
...−xn(n ≥ 8) be longest path of G. Since G, by assumption, is other than path or cycle,
there must exist y /∈ P such that y is adjacent to some xi with 2 < i < n
Without loss of generality, we can assume that i ≤ 4 and y is no adjacent to any xj with
1 < j < i. We have
xi−1, xi, xi+1, y creates a claw if y is no adjacent to xi+1 y, xi, xi+1, xi+2, xi+3 induces P5

if y is not adjacent to xi+2 or xi+3. However, in either case, there is a claw with y being
center.

By lemma 3, we are left with dealing the case where G contains both claw and P6.
We will iteratively remove vertices in G until at some step k, Gk is either claw-free or
P6-free, and dominating set of Gk can be used to construct dominating set of G. To do
so, we rely on the following theorem [1]

Theorem 4. If G is fork-free, contains both claw and P6 as induced subgraph, then
there exists a polynomial algorithm that partition V (G) into 3 subsets A,B and C which
satisfies all of the following:

1. G(B) contains P6 as induced subgraph

2. Any vertices in A is connected to every vertices in B
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3. There is no edge which has endpoints in B and C

Lemma 5. Minimum connected dominating set of G[A ∪C] is also minimum connected
dominating set of G

Let D be the minimum dominating set of G[A ∪ C]. If ∃ v ∈ D and v ∈ A, then by
Theorem 1, D is also dominating set of D.
Suppose D ⊂ C. If |D| = 1, then any vertex of A union with D will create a dominating
set of G which contradict the assumption that G has minimum dominating set with car-
dinality greater than 3. Therefore |D| ≥ 2
We will prove that every vertices in A dominates C. Let v ∈ A, we prove that v is
adjacent to every vertices in C. Since D is dominating set, there must exist d1 ∈ D
such that d1 is adjacent to v. Let d2 be any neighbor of d1 amd b1, b2 ∈ B, v must be
adjacent to d2, since otherwise {d2, d1, v, b1, b2} creates fork or P5. By induction and D
is dominating set, we conclude that v is adjacent to every vertices in C. However, in this
case, every single vertex belonging to A is a dominating set.

By theorem 1, we can do the following procedure to obtain minimum dominating set.
We first partition G into 3 subset A,B and C. Let G1 = G[A ∪ C]. G1 is either claw or
P6-free then we can easily find minimum dominating set in of G by lemma 4. Otherwise,
we continue partition G1 into 3 partitions A1, B1, C1, let G2 = G1[A1 ∪ C1], and repeat
the above step. By theorem 1, there is at least 6 vertices in B, so each iteration will
reduce at least 6 vertices. So after at most k = [n/6] step, Gk will be P6-free, and by
lemma 4, we have that dominating set of Gk+1 is also dominating set of Gk. Finally, we
can state our main theorm of this section.

Theorem 6. If G is (fork, P5)-free then the minimum dominating set can be solved in
polynomial time.

3 (claw, P5) - free Graph

In this section, we will introduce the concept of reducing set to point out that minimum
dominating set can be found in polynomial time in (claw, P5)-free class. For brevity,
every graph mentioned in this section is (claw, P5)-free.
We can easily prove the following lemma by using the same idea from lemma 1.

Lemma 7. Every connected component of minimal dominating set is clique

Let D1 be the minimal dominating set of G. Denote {C1
1 , C

1
2 , ..., C

1
d1
} be connected

components of D1 (here, we suppose that D1 has more than 1 components i.e d1 > 1). If
D1 is not minimum, there must exist another dominating set D2 has smaller cardinality
|D2| < |D1|. We also denote {C2

1 , C
2
2 , ..., C

2
d2
} be connected components of D2.

We will say two components C1
i and C2

j adjacent if ∃ v1 ∈ C1
i and C2

j such that v1 coin-
cides v2 or v1 is adjacent to v2. By definition of connected components, it is easily seen
that two different components of the same dominating set are not adjacent. Therefore,
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we only say adjacent components when one component belongs to a dominating set, and
the other one belongs to another dominating set.
Let R = G[D1 ∪ D2], and denote R1, R2, ..., Rk be connected components fo G. Since
|D2| < |D1|, there must exists Ri where the number of vertices belonging to D1 less that
that of which in D1. We call such components is reducing set, and show that if from D1

we replace D1 ∩Ri by D2 ∩Ri, we will obtain smaller dominating set.

Lemma 8. Let D be a minimal dominating set of G, a, b ∈ D be two adjacent vertices.
Replacing {u, v} by {u, b} or ({v, a}) obtains another dominating set D′ with the same
cardinality as D

Proof. We only need to prove D ∪ u \ a a dominating set.
Let x ∈ N(u) and x /∈ {a, v}. There must be a vertex x in neighbor of u and different
form a and v because if N(u) = {a, v} then replacing {u, v} by {v, a}, we obtain D′ with
satified properties.
If ∀x ∈ N(u), x /∈ {a, v}, x is adjacent to v, then replacing {u, v} by {v, a} also creates
dominating set D′ such that |D′| = |D|
If ∃x ∈ N(u), x /∈ {a, v}, x is not adjacent to v, then x must be adjacent to a otherwise
{u, a, x, v} induces a claw. In this case replacing {u, v} by {v, a} also creates dominating
set D′

Similar argument can be made for {u, b}
We will point out that, every minimal dominating set in this class has a independent
dominating set with less or equal cardinality. Inspired by augmenting technique, to deal
with finding minimum dominating set, we will start with a minimal dominating set D1,
and keep reducing the number of vertices in D1 until we are longer able to. Suppose D1

has a component with more than 1 node, denote u, v ∈ D1 then by lemma 6, we can
replace u, v by u, b or v, a without increasing number of node and keep the dominating
properties. This replacement step always creates a connected component with single ver-
tex, since a ∈ N r

D(u) (or b ∈ N r
D(v)). However, above argument can only be true if there

is no components in D1 which contains only a single vertex v and all of its neighbor is
adjacent to other vertex in D1. In this case, we can replace v by one of its neighbor. If the
dominating obtained after the replacement step has a non-clique connected component
then it is not minimal, we can continue to remove vertices in D1 to obtain smaller one.
We now assume that every connected components of D1 has more than 2 vertices. Let
C1

i is a components of D1 and C1
i = {xi

1, x
i
2, ..., x

i
ki
} (ki ≤ 2). In the replacement step,

we replace C1
i by {xi

1, y
i
2, ..., y

i
k} where yij ∈ N r

D(xj) ∀ j ∈ {2, 3, ..., ki}

Lemma 9. After perform series of replacement steps, we obtain a dominating indepen-
dent set

Proof. Suppose after the replacement step of two connected components C1
i and C1

j ,

we obtain dominating set D2 there exists edge between {xi
1, y

i
2, ..., y

i
ki
} and {xj

1, y
j
2, ..., y

j
kj
}.

By the minimality of D1, we have that xi
1 and xj

1 are the two new connected of compo-
nents D2. Therefore, there can only be edge between yini

and yjnj
for some 2 ≤ ni ≤ ki and

2 ≤ nj ≤ kj. However, in this case xi
ni
, yini

, yjnj
, xj

nj
, xj

1 induce P5. This means that after
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the replacement step, the size of the dominating set will not increase while the number
of connected components increase by at least the number of components of D1.
If after some replacement step, we obtain Di such that v ∈ Di is a component and
N r

Di
= ∅, then by similar argument, we can replace v by one of its neighbor and keep

reduce Di until it is minimal.
If Di is not independent, we remove all single component and its neighbor from G and Di,
and repeat the replacement step. Since the number of components increase after every
replacement step, after finite step, we will obtain an independent dominating set.

This lemma tells us that, for every minimal dominating set in G there exist an in-
dependent set with equal or smaller size. Hence, to find minimum dominating set, we
focus on finding minimum independent dominating set. Let D1 = {x1

1, x
1
2, ..., x

1
k1
} and

D2 = {x2
1, x

2
2, ..., x

2
k2
} be two minimal independent dominating set and R = G[D1 ∪D2].

Since D1 and D2 are independent, no vertices within the two set is adjacent to each
other. Furthermore ∆(R) ≤ 2, since if v ∈ R and d(v) ≤ 3, suppose v ∈ D1, then
NR(v) ⊂ D2, therefore v combined with its neighbors in R create a claw. This means
that every connected component of R can only be path or cycle. Moreover, G is P5-free,
every components of R cannot have more than 5 vertices.

Lemma 10. If C is a connected component of R, denote C = C1 ∪ C2 where C1 and C2

are respectively connected components of D1 and D2, then D1 \ C1 ∪ C2 is a dominating
set.

Proof. Since C is a connected component with more than 2 vertices, suppose x1 and
x2 belongs to C and adjacent to each other, where x1 ∈ C1 and x2 ∈ C2. Without loss of
generality, assume contradictory that ∃x ∈ G \ N [D1 \ C] such that x is adjacent to x1

but not x2. However, since D2 is also dominating set, there must exist y2 does not belong
to C and has x as its neighbor. Since D1 is also a dominating set, and by maximality of
C, there must be a vertex y1 ∈ D1 but not in C such that y1 is adjacent to y2 but not x.
In this case x2, x1, x, y2, y1 induces P5.

We are now able to state the main theorem in this section.

Theorem 11. Minimum doninating set in (claw, P5)-free graph can be found in polyno-
mial time.

Proof. From Lemma 9, we know that, in (claw, P5)-free graph, there exists an inde-
pendent dominating has the minimum cardinality. We begin our algorithm by finding a
minimal independent dominating set. By lemma 10, we have that a connected component
of the union of two minimal dominating set can serve as reducing set. Moreover, sine G
is claw-free, the bipartite graph can only be path or cycle. P5-free property make the
connected components cannot have more than 5 vertices. Therefore, we can enumerate
all path with length three and all cycles with length five. If no path or cycles founded
can reduce the number of the current dominating set, we conclude that the minimum
dominating set is found. Since after each step, the number of vertices decrease at least
one, so after at most n step, an minimum dominating set is found.

7



4 Conclusion

In this paper, we proved that MDS problem can be solved in polynomial time in two family
of graph: (fork, P5)-free and (claw, P5)-free. In both case, we first want to characterize
the property of minimal dominating set and then apply the reducing set technique. How-
ever, in the first family, the property of minimal connected dominating set alone help us
devise a polynomial algorithm. The second family utilize the concept of reducing set. In
fact, the class can be extend to any family of graph that forbid longer path as induced
subgraph.
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